

INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH  
POLISH ACADEMY OF SCIENCES

---

**Andrzej Ziolkowski**

**On Symmetric Tensors  
of Second and Fourth Order  
in Mechanics**

**with focus on Cauchy stress and Hooke tensors**

WARSAW 2025

# Contents

|                                                                                                                   |           |
|-------------------------------------------------------------------------------------------------------------------|-----------|
| <b>Lecture 1. Elements of philosophy and practice of Science</b>                                                  | <b>11</b> |
| 1.1. Elements of philosophy and practice of Science . . . . .                                                     | 11        |
| 1.2. Aims and targets of the present study . . . . .                                                              | 14        |
| <b>Lecture 2. Perception and description of physical phenomena</b>                                                | <b>15</b> |
| 2.1. Tensorial calculus, native language of natural sciences.<br>Geometric-algebraic dualism of tensors . . . . . | 15        |
| 2.2. Cauchy's concept of pressures non-perpendicular to the surfaces                                              | 16        |
| 2.3. Cauchy's stress as macroscopic constitutive model describing<br>force interactions in materials . . . . .    | 17        |
| 2.4. Perception of physical phenomena. Limitations or capabilities<br>of human senses? . . . . .                  | 19        |
| 2.5. What tensors are, how they can be understood, some historical<br>information . . . . .                       | 20        |
| <b>Lecture 3. Algebraic, operational and geometric definitions<br/>of tensors</b>                                 | <b>23</b> |
| 3.1. Algebraic definition of tensors . . . . .                                                                    | 23        |
| 3.2. Algebraic structures of tensorial calculus . . . . .                                                         | 24        |
| 3.3. Translation rules between absolute notation and indicial nota-<br>tion of tensors . . . . .                  | 32        |
| 3.4. Operational definition of tensors . . . . .                                                                  | 33        |
| 3.5. Geometrical definition of tensors . . . . .                                                                  | 34        |
| <b>Lecture 4. Symmetries of tensors and convenient notations<br/>of symmetric tensors</b>                         | <b>35</b> |
| 4.1. A concept of symmetry . . . . .                                                                              | 35        |
| 4.2. Internal symmetry of tensors . . . . .                                                                       | 35        |
| 4.3. External symmetry of tensors. Second order orthogonal tensors                                                | 37        |
| 4.4. Second order and fourth order symmetric tensors convenient<br>notations . . . . .                            | 38        |
| 4.4.1. Cauchy tensor in standard, Kelvin and principal values<br>notation . . . . .                               | 38        |

---

|                                                                                                                                                                                                                 |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 4.4.2. Hooke's tensor in standard, Kelvin and Voigt notation . . . . .                                                                                                                                          | 39        |
| 4.5. Unit tensors of various orders . . . . .                                                                                                                                                                   | 42        |
| <b>Lecture 5. Invariants and decompositions of second order symmetric tensors</b>                                                                                                                               | <b>45</b> |
| 5.1. Coordinate system versus Reference frame . . . . .                                                                                                                                                         | 45        |
| 5.2. Various bases of second order symmetric tensors . . . . .                                                                                                                                                  | 46        |
| 5.3. Invariants (Eigenproperties) of second order symmetric tensors                                                                                                                                             | 47        |
| 5.4. Various decompositions of second order symmetric tensors . . .                                                                                                                                             | 49        |
| <b>Lecture 6. Haigh–Westergaard space</b>                                                                                                                                                                       | <b>55</b> |
| 6.1. Haigh–Westergaard space of stress tensor principal values . . . . .                                                                                                                                        | 55        |
| 6.2. Critical surfaces for isotropic materials in Haigh–Westergaard space . . . . .                                                                                                                             | 56        |
| 6.3. Non-isomorphic and isomorphic coordinates in Haigh–Westergaard space . . . . .                                                                                                                             | 59        |
| 6.4. Vectorial decomposition of octahedral traction vector . . . . .                                                                                                                                            | 61        |
| <b>Lecture 7. Pure shears as convenient comparison reference states</b>                                                                                                                                         | <b>63</b> |
| 7.1. Lode angle expressed in terms of principal values and principal invariants . . . . .                                                                                                                       | 63        |
| 7.2. Lode angle lack of lucid physical interpretation . . . . .                                                                                                                                                 | 63        |
| 7.3. Some properties of pure shears and their physical interpretations                                                                                                                                          | 64        |
| <b>Lecture 8. The concept of isotropy angle <math>\theta_{\text{iso}}</math>, the concept of shear stress mode (skewness) angle <math>\theta_{\text{sk}}</math> and its statistical-physical interpretation</b> | <b>69</b> |
| 8.1. New structural parametrization of Cauchy stress tensor with isotropy angle $\theta_{\text{iso}}$ and shear mode angle $\theta_{\text{sk}}$ . . . . .                                                       | 69        |
| 8.2. Rychlewski's index of tensor anisotropy based on normalized maximum diameter of a tensor . . . . .                                                                                                         | 71        |
| 8.3. Statistical interpretation of stress tensor deviator invariants, shear stress mode angle $\theta_{\text{sk}}$ as a measure of entropic part of anisotropy of Cauchy stress tensor . . . . .                | 74        |
| <b>Lecture 9. Spectral decomposition of Hooke's tensor and some of its consequences</b>                                                                                                                         | <b>79</b> |
| 9.1. Structure and some properties of Hooke's tensor of anisotropic materials resulting from its spectral decomposition . . . . .                                                                               | 79        |

|                                                                                                                                      |            |
|--------------------------------------------------------------------------------------------------------------------------------------|------------|
| 9.2. Decomposition of Hooke's law into six uncoupled linear relations                                                                | 80         |
| 9.3. Decomposition of elastic energy of anisotropic materials into (maximum) six independent parts . . . . .                         | 83         |
| 9.4. Strength criteria of anisotropic materials based on elastic energy                                                              | 83         |
| 9.5. Spectral decomposition of Hooke's tensor of isotropic materials                                                                 | 84         |
| 9.6. The concept of isometric tensorial bases . . . . .                                                                              | 86         |
| <b>Lecture 10. Interaction of Cauchy stress and Hooke's tensor – the case of elastic isotropy</b>                                    | <b>89</b>  |
| 10.1. Decomposition of elastic energy of isotropic materials into two uncoupled parts, volumetric and distortional . . . . .         | 89         |
| 10.2. Some remarks on strength of materials criteria based on stored elastic energy for linear elastic isotropic materials . . . . . | 90         |
| 10.3. Simple shear and planar shear as experimental layouts realizing pure shear states of stress and/or strain . . . . .            | 91         |
| <b>Lecture 11. Biaxial (planar) tests in experimental examination of material behavior</b>                                           | <b>95</b>  |
| 11.1. Specific features of biaxial tests . . . . .                                                                                   | 95         |
| 11.2. Relations between triaxiality factor and shear stress mode angle $\theta_{sk}$ ( $\theta_L$ ) in biaxial tests . . . . .       | 98         |
| <b>Lecture 12. Closing remarks and summary</b>                                                                                       | <b>103</b> |
| 12.1. Other than stress physical interpretations of the second order symmetric tensors . . . . .                                     | 103        |
| 12.1.1. Novozhilov's material tensors . . . . .                                                                                      | 103        |
| 12.1.2. Christoffel's acoustic tensor . . . . .                                                                                      | 104        |
| 12.1.3. Hooke's tensor of 2D materials . . . . .                                                                                     | 106        |
| 12.2. Some open scientific problems of mechanics . . . . .                                                                           | 106        |
| 12.3. Summary . . . . .                                                                                                              | 107        |
| 12.4. Supplementary materials . . . . .                                                                                              | 111        |
| 12.4.1. On Wisdom . . . . .                                                                                                          | 111        |
| 12.4.2. On linear elasticity (Hooke's) constitutive law . . . . .                                                                    | 112        |
| 12.4.3. On types of ordering of orientational dipoles . . . . .                                                                      | 113        |
| <b>Bibliography</b>                                                                                                                  | <b>115</b> |